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Genetic mechanisms of critical illness in 

COVID-19

    

Host-mediated lung in�ammation is present1, and drives mortality2, in the critical 

illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants 

associated with critical illness may identify mechanistic targets for therapeutic 

development3. Here we report the results of the GenOMICC (Genetics Of Mortality In 

Critical Care) genome-wide association study in 2,244 critically ill patients with 

COVID-19 from 208 UK intensive care units. We have identi�ed and replicated the 

following new genome-wide signi�cant associations: on chromosome 12q24.13 

(rs10735079, P = 1.65 × 10−8) in a gene cluster that encodes antiviral restriction enzyme 

activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10−8) 

near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 

(rs2109069, P = 3.98 ×  10−12) within the gene that encodes dipeptidyl peptidase 9 

(DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10−8) in the interferon 

receptor gene IFNAR2. We identi�ed potential targets for repurposing of licensed 

medications: using Mendelian randomization, we found evidence that low expression 

of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; 

and transcriptome-wide association in lung tissue revealed that high expression of the 

monocyte–macrophage chemotactic receptor CCR2 is associated with severe 

COVID-19. Our results identify robust genetic signals relating to key host antiviral 

defence mechanisms and mediators of in�ammatory organ damage in COVID-19. Both 

mechanisms may be amenable to targeted treatment with existing drugs. However, 

large-scale randomized clinical trials will be essential before any change to clinical 

practice.

As critical illness in patients with COVID-19 is caused, in part, by 

inflammatory injuries that affect the lungs and lung blood vessels1, 

there are at least two distinct biological components to the mortal-

ity risk: susceptibility to viral infection and propensity to develop 

harmful pulmonary inflammation. Susceptibility to life-threatening 

infections4 and immune-mediated diseases are both strongly herit-

able. In particular, susceptibility to respiratory viruses5 such as influ-

enza6 is heritable and known to be associated with specific genetic 

variants7. In the case of COVID-19, one genetic locus—on chromosome 

3p21.31—has been repeatedly associated with hospitalization8,9. As 

with other virus-associated diseases10, there are several examples of 

loss-of-function variants affecting essential immune processes that 

lead to severe disease in young people, such as TLR711 and some genes 

implicated in type 1 interferon signalling, including the receptor subunit 

IFNAR212. Genome-wide studies have the potential to reveal previously 

undescribed molecular mechanisms of critical illness in patients with 

COVID-19, which may provide therapeutic targets to modulate the host 

immune response to promote survival3.

Strong evidence indicates that critical illness caused by COVID-19 is 

qualitatively different from mild or moderate disease, even among hos-

pitalized patients. There are multiple distinct disease phenotypes with 

differing patterns of symptoms13 and marked differential responses to 

immunosuppressive therapy2. In patients without respiratory failure, 

there is a trend indicating that treatment with corticosteroids is harm-

ful, whereas among patients with critical respiratory failure, there is 

a substantial benefit2. On this basis, we consider patients with critical 

COVID-19 respiratory failure to have a distinct pathophysiology.

In the UK, the group of patients admitted to critical care is relatively 

homogeneous, with profound hypoxaemic respiratory failure being the 

archetypal presentation14. The active disease process in these patients 

is markedly responsive to corticosteroid therapy15 and is characterized 

by pulmonary inflammation including diffuse alveolar damage, influx 

of monocytes and macrophagess, mononuclear cell pulmonary artery 

vasculitis and microthrombus formation1,16.

Host-directed therapies have long been an aim for the treatment 

of the severe disease caused by respiratory viruses17. Identification 

of genetic loci associated with susceptibility to COVID-19 may lead to 

specific targets for the development or repurposing of drugs3.

The GenOMICC (Genetics Of Mortality In Critical Care, https://

genomicc.org/) study has been recruiting patients with critical ill-

ness syndromes, including influenza, sepsis and emerging infections, 

for 5 years. To better understand the host mechanisms that lead to 

life-threatening disease in patients with COVID-19, we performed a 

genome-wide association study (GWAS) comparing critically ill patients 

with COVID-19 with controls from population genetic studies in the UK.

Characteristics of participants

Critically ill cases were recruited through the GenOMICC study in 208 

UK intensive care units and hospitalized cases were recruited through 
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the International Severe Acute Respiratory Infection Consortium 

(ISARIC) Coronavirus Clinical Characterization Consortium (4C) study.

DNA was extracted from whole blood and array-based genome-wide 

genotypes of good quality were obtained for 2,734 unique individuals 

(Methods). Genetic ancestry was inferred using principal component 

analyses and individuals from the 1000 Genomes Project were included 

as population references (Methods). After quality control and match-

ing to ancestry groups, 2,244 individuals were included in the GWAS for 

analysis. Clinical and demographic features of these cases are shown in 

Extended Data Table 1. Additional clinical details for a subset of 1,069 cases 

for whom additional data were available are presented in Supplementary 

Figs. 7–13 and Supplementary Table 2. Cases were representative of criti-

cally ill patients with COVID-19 in the UK population14. Imputation in this 

multi-ancestry cohort was performed using the TOPMed reference panel.

Ancestry-matched control individuals were selected from the large 

population-based cohort of UK Biobank (five controls were included 

for each case). Controls with a known positive COVID-19 test were 

excluded. The inevitable presence of individuals in the control group, 

who may exhibit the critical illness phenotype if exposed to SARS-CoV-2 

is expected to bias any associations towards the null hypothesis. GWAS 

was carried out separately for each ancestry group using logistic regres-

sion in PLINK and accounting for age, sex, deprivation decile based on 

the individual’s residential postal code and principal components of 

ancestry. In addition to several standard filters to minimize spurious 

associations (Methods), whole-genome sequencing analysis of a subset 

of 1,613 cases was used to filter out variants that are likely to have been 

badly called or imputed; 83,937 out of the 4,469,187 imputed variants 

that passed other quality-control filters after GWAS were thus removed. 

There was a high level of residual inflation in the South Asian and East 

Asian ancestry groups, rendering results in these subgroups unreliable 

(Extended Data Fig. 1, Supplementary Fig. 4). The largest ancestry group 

contained 1,676 individuals of European descent; this group was used 

for the primary analyses presented below.

GWAS results

In the primary analysis (cases of European descent from GenOMICC ver-

sus controls from the UK Biobank), after linkage-disequilibrium-based 

clumping, 15 independent association signals were genome-wide sig-

nificant at P < 5 × 10−8 (Supplementary Fig. 1). Eight of these signals 

were successfully validated in GWAS analyses using two independent 

population genetic studies (100,000 Genomes Project and Generation 

Scotland: Scottish Family Health Study, hereafter Generation Scotland) 

as controls (Table 1) and were therefore taken forward for replication. A 

sex-specific GWAS among this group found no sex-specific associations 

(Supplementary Table 1). A trans-ethnic meta-analysis did not reveal 

any additional associations (Supplementary Fig. 3).

Replication

As no study of critical illness in patients with COVID-19 of sufficient size 

is available, replication was carried out in a meta-analysis of data from 

2,415 hospitalized patients with COVID-19 and 477,741 population con-

trols from the COVID-19 Host Genetics Initiative (HGI, individuals of 

mixed ancestry from which cases and controls of the UK Biobank were 

excluded) and 1,128 cases and 679,531 controls of European ancestry 

from the ‘broad respiratory phenotype’ study of 23andMe Inc, which 

includes cases that were reported as having been placed on a ventilator, 

administered oxygen or having had pneumonia compared with control 

individuals who did not report COVID-19-positive tests. In addition to the 

locus on chromosome 3 that has previously been reported (rs73064425, 

odds ratio = 2.14, discovery P = 4.77 × 10−30), we found robust replica-

tion for previously undescribed associations in four loci from GenOM-

ICC: a locus on chromosome 12 in the OAS gene cluster (rs10735079, 

odds ratio = 1.3, discovery P = 1.65 × 10−8), near TYK2 on chromosome 19 

(rs74956615, odds ratio = 1.6, discovery P = 2.3 × 10−8), in DPP9 on chro-

mosome 19 (rs2109069, odds ratio = 1.36, discovery P = 3.98 × 10−12) and 

a locus on chromosome 21, which contains the gene IFNAR2 (rs2236757, 

odds ratio = 1.28, discovery P = 4.99 × 10−8) (Fig. 1, Extended Data Table 2).

Three variants, all in a region of chromosome 6 for which population 

stratification is difficult to control (the major histocompatibility complex) 

did not replicate (Extended Data Table 2, Supplementary Fig. 2). Further 

studies will be required to determine whether these associations are real.

To increase power for exploratory analyses, inverse-variance 

meta-analysis was performed between critically ill patients of European 

descent from GenOMICC (n = 1,676 cases, n = 8,380 controls), hospi-

talized patients with COVID-19 versus population controls (B2, ver-

sion 2) without UK Biobank participants from the HGI (n = 2,415 cases, 

n = 477,741 controls) and the participants with the broad respiratory 

phenotype from 23andMe (n = 1,128 cases, n = 679,531 controls). This 

revealed one additional (unreplicated) locus in CCHCR1 at genome-wide 

significance (using a more-stringent threshold of P < 10−8 because of the 

absence of replication opportunities for the meta-analysis) (Table 2).

Mendelian randomization

Mendelian randomization provides evidence for a causal relation-

ship between an exposure variable and an outcome, given a set of 

well-characterized assumptions18. We used two-sample summary-data 

Mendelian randomization to assess the evidence in support of causal 

effects of RNA expression (Genotype-Tissue expression (GTEx) v.7, 

whole blood) of various genes on the odds of patients becoming criti-

cally ill due to COVID-19.

We specified an a priori list of target genes that relate to the mecha-

nism of action of many host-targeted drugs that have been proposed for 

Table 1 | Lead variants from independent genome-wide significant regions

SNP Chr.: pos. Risk Alt. RAFgcc RAFukb OR CI Pgcc.ukb Pgcc.gs Pgcc.100k Locus

rs73064425 3: 45,901,089 T C 0.15 0.07 2.1 1.88–2.45 4.8 × 10−30 2.9 × 10−27 3.6 × 10−32 LZTFL1

rs9380142 6: 29,798,794 A G 0.74 0.69 1.3 1.18–1.43 3.2 × 10−8 0.00091 1.8 × 10−8 HLA-G

rs143334143 6: 31,121,426 A G 0.12 0.07 1.8 1.61–2.13 8.8 × 10−18 2.6 ×10−24 5.8 × 10−18 CCHCR1

rs3131294 6: 32,180,146 G A 0.9 0.86 1.5 1.28–1.66 2.8 × 10−8 1.3 × 10−10 2.3 × 10−8 NOTCH4

rs10735079 12: 113,380,008 A G 0.68 0.63 1.3 1.18–1.42 1.6 × 10−8 2.8 × 10−9 4.7 × 10−6 OAS1–OAS3

rs2109069 19: 4,719,443 A G 0.38 0.32 1.4 1.25–1.48 4 × 10−12 4.5 × 10−7 2.4 × 10−8 DPP9

rs74956615 19: 10,427,721 A T 0.079 0.05 1.6 1.35–1.87 2.3 × 10−8 2.2 × 10−13 3.9 × 10−6 TYK2

rs2236757 21: 34,624,917 A G 0.34 0.28 1.3 1.17–1.41 5 × 10−8 8.9 × 10−5 8.3 × 10−7 IFNAR2

As this is a meta-analysis of all available data, external replication cannot be attempted, so SNPs are included if they meet a more stringent P-value threshold of P < 10−8. SNP, the strongest SNP 

in the locus. Chr.: pos., chromosome and position of the top SNP (build 37); Risk, risk allele; Alt., alternative allele; RAF, risk allele frequency; OR, effect size (odds ratio) of the risk allele in the 

GenOMICC European analysis; CI, 95% confidence interval for the odds ratio in the GenOMICC European cohort; P, P value; Locus, gene nearest to the top SNP. Subscript identifiers indicate the 

cohorts used for cases (gcc, GenOMICC European cohort) and controls (ukb, UK Biobank; gs, Generation Scotland; 100k, 100,000 Genomes Project).
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the treatment of patients with COVID-19 (Supplementary Table 3). Seven 

of these targets had a suitable locally acting expression quantitative 

trait locus (eQTL) in GTEx (v.7). Of these, IFNAR2 remained significant 

after Bonferroni correction for multiple testing for seven tests (β = −1.49, 

s.e. = 0.52, P = 0.0043) (Supplementary Table 4). There was equivocal 

evidence of heterogeneity (HEIDI19 P = 0.015), indicating that the effect 

of this variant on critical illness in COVID-19 may be mediated through 

another mechanism, which may lead to an under- or overestimation of 

the effect of IFNAR2 expression on the risk of critical illness in COVID-19.

We next performed transcriptome-wide Mendelian randomization 

to quantify support for unselected genes as potential therapeutic tar-

gets. Instruments (genetic variants that affect gene expression) were 

available for 4,614 unique Ensembl gene IDs. No genes were statistically 

significant after correcting for multiple comparisons in this analysis (4,614 

tests). After conservative filtering for heterogeneity (HEIDI P > 0.05), the 

smallest Mendelian randomization P = 0.00049 was associated with a 

variant on chromosome 19: 10,466,123 that affects expression of TYK2. 

Nine other genes with nominally significant Mendelian randomiza-

tion P values (P < 0.0051) were also taken forward for further analysis  

(Supplementary Table 5).

To replicate these findings, we tested for external evidence using a 

separate eQTL data set (eQTLgen)20 and GWAS (HGI B2, excluding UK 

Biobank participants). Mendelian randomization signals with consist-

ent directions of effect were significant for IFNAR2 (P = 7.5 × 10−4) and 

TYK2 (P = 5.5 × 10−5) (Supplementary Table 6).

Transcriptome-wide association study

We performed a transcriptome-wide association study (TWAS)21,22 to 

link GWAS results to tissue-specific gene expression data by inferring 

gene expression from known genetic variants that are associated with 

transcript abundance (eQTL). For this analysis, we used GTEx v.8 data 

for two disease-relevant tissues chosen a priori: whole blood and lung 

samples (Fig. 2). We selected genes with P < 0.05 in these tissues and 

performed a combined meta-TWAS analysis23, incorporating eQTL data 

from other tissues in GTEx, to optimize power to detect differences in 

predicted expression in lung or blood.

We discovered five genes with genome-wide significant differences in 

predicted expression compared to control individuals (Supplementary 

Table 7). This included four genes with differential predicted expression 

in lung tissue (three on chromosome 3, CCR2, CCR3 and CXCR6; and one 

on chromosome 5, MTA2B) (Supplementary Tables 8–10).

We used meta-analysis by information content (MAIC)24 to put these 

results in the context of existing biological knowledge about host–virus 

interactions associated with COVID-19. We combined the top 2,000 

genes in metaTWAS with previous systematically compiled experi-

mental evidence implicating human genes in SARS-CoV-2 replication 

and host response. MAIC derives a data-driven weighting for each gene 

from a range of experimental data sources in the form of gene lists, and 

outperforms other approaches to providing a composite of multiple 

lists24. We found that the GenOMICC TWAS results had greater overlap 

with results from transcriptomic, proteomic and CRISPR studies of host 

genes implicated in COVID-19 than any other data source(Extended 

Data Fig. 2).

Genetic correlations

We used a high-definition likelihood method25 to provide an initial 

estimate of heritability based on single-nucleotide polymorphisms 

(SNPs) (that is, the proportion of phenotypic variance captured by 

additive effects at common SNPs) for severe COVID-19, which was found 

to be 0.065 (s.e. = 0.019). We were not able to detect a significant signal 

for heritability in two additional analyses: first, using controls from 

the 100,000 Genomes Project (in which matching to the cases from 

GenOMICC is less close, which may limit heritability estimation) and 

second, in a smaller GWAS in which some cases from GenOMICC were 

compared with controls from the UK Biobank, using matched data 

for body-mass index and age where possible. This second analysis 

was less powerful because of the lack of close matches for many cases 

(n = 1,260 cases, n = 6300 controls) (Supplementary Fig. 14). Including 
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Fig. 1 | Discovery GWAS and meta-analysis results. Miami plot showing the  

P values for the GenOMICC GWAS in individuals of European ancestry after 

validation (top) and meta-analysis including patients from the COVID-19 HGI 

and 23andMe (bottom). Uncorrected P values from GWAS analysis are shown. 

Top, the red horizontal line indicates genome-wide significance for common 

variants at −log10(5 × 10−8). Bottom, the red horizontal line indicates a 

more-stringent genome-wide significance threshold for meta-analysis variants 

at −log10(1 × 10−8). Insets, quantile–quantile (QQ) plots of observed versus 

expected P values that show genomic inflation (λ) for each analysis: GenOMICC 

European cohort, λ = 1.099; GenOMICC HGI–23andMe meta-analysis, λ = 1.017. 

Full QQ plots are shown in Extended Data Fig. 1.
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rare variants in future analyses, which have larger numbers of cases of 

COVID-19, will provide a more comprehensive estimate of heritability. 

We also tested for genetic correlations with other traits—that is, the 

degree to which the underlying genetic components are shared with 

severe COVID-19. Using the high-definition likelihood method, we iden-

tified significant negative genetic correlations with educational attain-

ment and intelligence. Significant positive genetic correlations were 

detected for a number of adiposity phenotypes including body-mass 

index and leg fat (Supplementary Fig. 19).

Consistent with GWAS results from other infectious and inflamma-

tory diseases, there was a significant enrichment of strongly associated 

variants in promoters and enhancers26, particularly those identified 

by the EXaC study as under strong evolutionary selection27 (Supple-

mentary Fig. 18). The strongest tissue-type enrichment was in spleen 

(which may reflect enrichment in immune cells), followed by pancreas 

(Supplementary Fig. 20).

Discussion

We have discovered and replicated significant genetic associations 

that are associated with life-threatening COVID-19 (Fig. 1). Our focus on 

critical illness increases the probability that some of these associations 

relate to the later, immune-mediated phase of COVID-19 associated 

with respiratory failure that requires invasive mechanical ventilation2. 

Notably, the GWAS approach is unbiased and genome-wide, enabling the 

discovery of previously undescribed pathophysiological mechanisms. 

Because genetic variation can be used to draw a causal inference, genetic 

evidence in support of a therapeutic target substantially improves the 

probability of successful drug development28. In particular, Mendelian 

randomization occupies a unique position in the hierarchy of clinical 

evidence29.

Patients admitted to intensive care units in the UK during the first 

wave of COVID-19 were, on average, younger and less burdened by 

comorbid illnesses than the hospitalized population14. The population 

studied here was defined by their propensity to critical respiratory 

failure due to COVID-19. GenOMICC recruited in 208 intensive care 

units (covering >95% of the capacity of intensive care units in the UK), 

ensuring that a broad spread across the genetic ancestry of patients 

from the UK was included (Extended Data Fig. 3).

For external replication, the nearest comparison is the analysis of 

hospitalized patients versus population controls in the COVID-19 HGI, 

and the broad respiratory phenotype dataset from 23andMe, which 

have been generously shared with the international community. We 

have also immediately made full summary statistics from GenOMICC 

data openly available at https://genomicc.org/data/.

Despite the differences in case definitions, new associations from 

our study of critical illness replicate robustly in combined data from 

studies of hospitalized cases of COVID-19 (Extended Data Table 2). Sepa-

rately, the Mendelian randomization results that suggest a causal role 

for IFNAR2 and TYK2 are also statistically significant in confirmatory 

analyses. Our findings reveal that critical illness in COVID-19 is related 

to at least two biological mechanisms: innate antiviral defences, which 

are known to be important early in disease (IFNAR2 and OAS genes), 

and host-driven inflammatory lung injury, which is a key mechanism 

of late, life-threatening COVID-19 (DPP9, TYK2 and CCR2)2.

Interferons are canonical mediators of antiviral signalling in the 

host and stimulate release of many essential components of the early 

host response to viral infection30. Consistent with a beneficial role for 

type I interferons, increased expression of the interferon receptor 

subunit IFNAR2 reduced the odds of severe COVID-19 with Mende-

lian randomization discovery P = 0.0043 (seven tests); replication 

P = 7.5 × 10−4 (one test). Within the assumptions of Mendelian rand-

omization, this represents evidence for a protective role of IFNAR2 in 

COVID-19. Rare loss-of-function mutations in IFNAR2 are associated 

with severe COVID-1912 and many other viral diseases31,32. This sug-

gests that administration of interferon may reduce the probability 

of critical illness in COVID-19, but our evidence cannot distinguish 

when during disease progression of COVID-19 such a treatment may 

be effective. Exogenous interferon treatment did not reduce mortality 

in hospitalized patients in a large-scale clinical trial33, suggesting that 

this genetic effect may be mediated during the early phase of disease 

when the viral load is high.

The variant rs10735079 (chromosome 12, P = 1.65 × 10−8) lies in the 

interferon-inducible oligoadenylate synthetase (OAS) gene cluster 

(OAS1, OAS2 and OAS3) (Fig. 1). Our TWAS detected significant associa-

tions with predicted expression of OAS3 (Fig. 2). OAS1 variants were 

implicated in susceptibility to SARS-CoV in candidate gene association 

studies in Vietnam34 and China35. These genes encode enzymes that 

produce a host antiviral mediator (2′,5′-oligoadenylate (2-5A)) that acti-

vates an effector enzyme, RNase L. RNase L degrades double-stranded 

RNA36, a replication intermediate of coronaviruses37. The betacoro-

naviruses OC43 and MHV make viral phosphodiesterases that cleave 

2-5A38, but SARS-CoV-2 is not known to have this ability. The OAS genes 

therefore also provide a potential therapeutic target: endogenous 

phosphodiesterase 12 (PDE-12) activity degrades 2-5A. Therapeutic 

PDE-12 inhibitors are available and augment OAS-mediated antiviral 

activity39.

The association on chromosome 19p13.3 (rs2109069, P = 3.98 × 10−12) 

is an intronic variant in the gene that encodes dipeptidyl peptidase 9 

(DPP9). Variants in this locus are associated with idiopathic pulmonary 

fibrosis40. DPP9 encodes a serine protease that has diverse intracel-

lular functions, including the cleavage of the key antiviral signalling 

mediator CXCL1041, and key roles in antigen presentation42 and inflam-

mosome activation43.

As opportunities for therapeutic intervention, particularly experi-

mental therapy, are more abundant in later, more-severe cases of dis-

ease, it is important that our results also reveal genes that may act to 

drive inflammatory organ injury. TYK2 is one of four gene targets for 

JAK inhibitors such as baricitinib44, one of the nine candidate drugs 

that we used in the creation of our a priori target list (Supplementary 

Table 3). The association between TYK2 expression and critical illness 

was also confirmed in an external dataset (Table 2).

Table 2 | Meta-analysis of overlapping SNPs between GenOMICC, HGI and 23andMe studies

SNP Chr.: pos. Risk Alt. ORgcc CIgcc Pgcc ORmeta CImeta Pmeta Locus

rs71325088 3: 45,862,952 C T 2.1 1.87–2.43 9.3 × 10−30 1.9 1.73–2 2.5 × 10−54 LZTFL1

rs143334143 6: 31,121,426 A G 1.8 1.61–2.13 8.8 × 10−18 1.3 1.27–1.48 1.5 × 10−10 CCHCR1

rs6489867 12: 113,363,550 T C 1.3 1.15–1.37 6.9 × 10−7 1.2 1.14–1.25 9.7 × 10−10 OAS1–OAS3

rs2109069 19: 4,719,443 A G 1.4 1.25–1.48 4 × 10−12 1.2 1.19–1.31 7 × 10−13 DPP9

rs11085727 19: 10,466,123 T C 1.3 1.17–1.4 1.3 × 10−7 1.2 1.18–1.31 1.2 × 10−13 TYK2

rs13050728 21: 34,615,210 T C 1.3 1.15–1.38 3 × 10−7 1.2 1.16–1.28 5.1 × 10−12 IFNAR2

gcc, GenoMICC European study compared with UK Biobank; meta, combined meta-analysis of all three studies for individuals of European ancestry: GenOMICC (n = 1,676 cases, n = 8,380 

controls), HGI (n = 2,415 cases, n = 477,741 controls) and 23andMe(n = 1,128 cases, n = 679,531 controls).

https://genomicc.org/data/
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We replicate the association at chromosome 3p21.31 that has pre-

viously been described8. The extremely small P value at this locus 

(P = 4.77 × 10−30) may reflect the large size of our study, and our focus 

on extreme severity, as we see a larger effect size in the GenOMICC 

dataset than in the replication studies (Extended Data Fig. 4). A num-

ber of genes in this locus could plausibly explain an association. Our 

systematic review and meta-analysis of experimental data on infec-

tions with betacoronaviruses from other sources provides moderate 

biological support for FYCO1, although this additional information 

comes mostly from in vitro model systems45. Our TWAS results show 

that variants in this region confer genome-wide significant differences 

in predicted expression of CXCR6, CCR2 and CCR3 (Fig. 2a); it is likely 

that at least one of these genes is an important mediator of critical 

illness in patients with COVID-19.

Association with critical illness for genotype-inferred CCR2 

(CC-chemokine receptor 2) expression is particularly strong in lung tissue 

(Fig. 2b). CCR2 promotes chemotaxis of monocytes and macrophages 

towards sites of inflammation, and there is increased expression of the 

canonical ligand for CCR2 (monocyte chemoattractant protein (MCP-1)), 

in bronchoalveolar lavage fluid from the lungs of patients with COVID-19 

during mechanical ventilation46. Concentrations of circulating MCP-1 are 

associated with more-severe disease47. Anti-CCR2 monoclonal antibody 

therapy for the treatment of rheumatoid arthritis is safe48.

The ABO locus was also previously associated with COVID-198, but 

did not reach genome-wide significance in the GenOMICC cohort of 

critically ill patients with COVID-19. Notably, there is a signal close to 

genome-wide significance at this locus in the combined meta-analysis 

(Fig. 1), suggesting that this variant may be associated with susceptibil-

ity to COVID-19, but not critical illness (Extended Data Fig. 4).

Analysis of shared heritability highlights a positive correlation with 

adiposity. This does not confirm a causal relationship, as a number 

of biases may affect this analysis. Two effects are likely to be present: 

first, increased body-mass index and lower socio-economic status 

are strong risk factors for severe COVID-1914, and second, UK Biobank 

participants are disproportionately drawn from social groups in which 

obesity is underrepresented compared with the general population49.

Because of the urgency of completing and reporting this study, we 

have included controls from population genetic studies with system-

atic differences in population structure, demographics and comorbid 

diseases, who were genotyped using different technologies compared 

with the cases that we report. Residual confounding is reflected in the 

genomic inflation (λ0.5) value of 1.099 for the primary analysis (Extended 

Data Fig. 1). We mitigated the consequent risk of false-positive associa-

tions driven by genotyping errors by genotyping the majority of our par-

ticipants using two different methods (microarray and whole-genome 

sequencing analyses), and by verifying significant associations using 

two additional control groups (the 100,000 Genomes Project and Gen-

eration Scotland). The success of these mitigations is demonstrated 

by robust replication of our sentinel SNPs in external studies. Our 

meta-analysis, combining GenOMICC with multiple additional sources 

of genome-wide associations, has a λ0.5 = 1.017 (Extended Data Fig. 1).

There is an urgent need to extend these findings through further 

studies. Our MAIC results show that highly ranked genes in the GenOM-

ICC dataset are more likely to be implicated in COVID-19 in other stud-

ies (Extended Data Fig. 2). We continue to recruit to the GenOMICC 

study, in the expectation that additional associations exist and can 

be detected with larger numbers of cases of COVID-19. Future studies 

using whole-genome sequencing will search the rarer end of the allele 

frequency spectrum for variants that increase susceptibility to COVID-

19. Effect sizes are likely to be greater in the GenOMICC study because 

the cohort is strongly enriched for immediately life-threatening disease 

in patients who are either receiving invasive mechanical ventilation, 
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or considered by the treating physicians to be at high risk of requiring 

mechanical support.

We have discovered new and highly plausible genetic associations 

with critical illness in COVID-19. Some of these associations lead directly 

to potential therapeutic approaches to augment interferon signal-

ling, antagonize monocyte activation and infiltration into the lungs, 

or specifically target harmful inflammatory pathways. Although this 

adds substantially to the biological rationale that underpins specific 

therapeutic approaches, each treatment must be tested in large-scale 

clinical trials before entering clinical practice.
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Methods

Data reporting

No statistical methods were used to predetermine sample size. The 

experiments were not randomized and the investigators were not 

blinded to allocation during experiments and outcome assessment.

Recruitment of cases

In total, 2,636 patients who were recruited to the GenOMICC study 

(https://genomicc.org/) had confirmed COVID-19 according to local 

clinical testing and were deemed, in the view of the treating clinician, 

to require continuous cardiorespiratory monitoring. In UK practice 

this kind of monitoring is undertaken in high-dependency or intensive 

care units. An additional 135 patients were recruited through ISARIC4C 

(https://isaric4c.net/)—these individuals had confirmed COVID-19 

according to local clinical testing and were deemed to require hospital 

admission. Both studies were approved by the appropriate research 

ethics committees (Scotland, 15/SS/0110; England, Wales and Northern 

Ireland, 19/WM/0247). Current and previous versions of the study pro-

tocol are available at https://genomicc.org/protocol/. All participants 

gave informed consent.

Genotyping

DNA was extracted from whole blood using the Nucleon Kit (Cytiva) with 

the BACC3 protocol. DNA samples were resuspended in 1 ml TE buffer 

pH 7.5 (10 mM Tris-Cl pH 7.5, 1 mM EDTA pH 8.0). The DNA yield was 

measured using Qubit and normalized to 50 ng µl−1 before genotyping.

Genotyping was performed using the Illumina Global Screening 

Array v.3.0 + multi-disease bead chips (GSAMD-24v3-0-EA) and Infinium 

chemistry. In summary, this consists of three steps: (1) whole-genome 

amplification; (2) fragmentation followed by hybridization; and (3) 

single-base extension and staining. For each of the samples, 4 µl of DNA 

normalized to 50 ng µl−1 was used. Each sample was interrogated on the 

arrays against 730,059 SNPs. The arrays were imaged on an Illumina 

iScan platform and genotypes were called automatically using Genom-

eStudio Analysis software v.2.0.3, GSAMD-24v3-0-EA_20034606_

A1.bpm manifest and cluster file provided by the manufacturer.

In 1,667 cases, genotypes and imputed variants were confirmed with 

Illumina NovaSeq 6000 whole-genome sequencing (WGS). Samples 

were aligned to the human reference genome hg38 and variant called 

to GVCF stage on the DRAGEN pipeline (software v.01.011.269.3.2.22, 

hardware v.01.011.269) at Genomics England. Variants were genotyped 

with the GATK GenotypeGVCFs tool v.4.1.8.150, filtered to minimum 

depth 8× (95% sensitivity for heterozygous variant detection51,) merged 

and annotated with allele frequency with bcftools v.1.10.2.

Quality control

Genotype calls were carefully examined within GenomeStudio using 

manufacturer’s and published52 recommendations, after excluding 

samples with low initial call rate (<90%) and reclustering the data 

thereafter. In brief, X and Y marker calls were all visually inspected 

and curated if necessary, as were those calls of autosomal markers 

with minor allele frequency (MAF) > 1% that had a low Gentrain score, 

cluster separation and an excess or deficit of heterozygous calls. 

Genotype-based sex determination was performed in GenomeStu-

dio and samples were excluded if they did not match the expectation 

based on clinical records. Five individuals with XXY genotypes were 

also detected and excluded for downstream GWAS analyses. Geno-

types were exported, in Genome Reference Consortium human build 

37 (GRCHb37) and Illumina ‘source’ strand orientation, using the Geno-

typeStudio PLINK input report plugin v.2-1-4. A series of filtering steps 

was then applied using PLINK 1.9, leaving 2,790 individuals and 479,095 

variants for further analyses (after exclusion of samples with a call rate 

of <95%, selection of variants with call rate of >99% and MAF > 1% and 

the final selection of samples using a call rate of >97%).

Kinship

Kinship and ancestry inferences were calculated following the UK 

Biobank49 and 1 Million Veteran Program53. First, King 2.154 was used 

to find duplicate individuals who have been recruited by two different 

routes. The analysis flagged 56 duplicate pairs, from which one was 

removed according to genotyping quality (GenomeStudio p50GC score 

and/or individual call rate). This lef a set of 2,734 unique individuals.

Regions of high linkage disquilibrium (LD) defined in the UK 

Biobank49 were excluded from the analysis, as well as SNPs with 

MAF < 1% or missingness >1%. King 2.1 was used to construct a relation-

ship matrix up to the third degree using the King command --kinship 

--degree 3 and then the function largest_independent_vertex_set() 

from the igraph tool http://igraph.sf.net was used to create a first 

set of unrelated individuals. Principal component analysis (PCA) was 

conducted with gcta 1.955 in the set of unrelated individuals with pruned 

SNPs using a window of 1,000 markers, a step size of 80 markers and 

an r2 threshold of 0.1. SNPs with large weights in PC1, PC2 or PC3 were 

removed, keeping at least two-thirds of the number of pruned SNPs 

to keep as an input for the next round of King 2.1. The second round 

of King 2.1 was run using the SNPs with low weights in PC1, PC2 and 

PC3 to avoid overestimating kinship in individuals of non-European 

ancestry. After this round 2,718 individuals were considered unrelated 

up to the third degree.

Genetic ancestry

Unrelated individuals from the 1,000 Genome Project dataset were 

calculated using the same procedure as described above, and both 

datasets were merged using the common SNPs. The merged genotyped 

data was pruned with PLINK using a window of 1,000 markers, a step 

size of 50 and a r2 of 0.05, leaving 92,017 markers that were used to 

calculate the 20 first principal components with gcta 1.9. Ancestry 

for GenOMICC individuals was inferred using ADMIXTURE56 popula-

tions defined in the 1000 Genomes Project. When one individual had 

a probability >80% of pertaining to one ancestry, then the individual 

was assigned to this ancestry, otherwise the individual was assigned 

to ‘admixed’ ancestry as in the 1 Million Veteran cohort53. According to 

this criterion, there are 1,818 individuals of European ancestry, 190 indi-

viduals of African ancestry, 158 individuals of East Asian ancestry, 254 

individuals of South Asian ancestry and 301 individuals with admixed 

ancestry (2 or more ancestries).

Imputation

Genotype files were converted to plus strand and SNPs with Hardy–

Weinberg equilibrium (HWE) P < 10−6 were removed. Imputation was 

calculated using the TOPMed reference panel57 and results were given 

in the GRCh38 human reference genome and plus strand. The imputed 

dataset was filtered for monogenic and low imputation quality score 

(r2 < 0.4) using BCFtools 1.9. To perform GWAS analyses, files in VCF 

format were further filtered for r2 > 0.9 and converted to BGEN format 

using QCtools 1.358.

UK Biobank imputed variants with imputation score >0.9 and overlap-

ping our set of variants (n = 5,981,137) were extracted and merged with 

GenOMICC data into a single BGEN file containing cases and controls 

using QCtools 1.3.

GWAS

Related individuals to third degree were removed. In addition, 13 indi-

viduals with American ancestry were removed as the sample size pro-

vided insufficient power to perform a reliable GWAS analyses for this 

group. The final dataset includes 2,244 individuals. Using PCA to infer 

genetic ancestry, there were 1,676 individuals of European ancestry, 149 

individuals of East Asian ancestry, 237 individuals of South Asian ances-

try and 182 individuals of African ancestry (Extended Data Table 1). If 

age or deprivation status were missing for some individuals, the value 

https://genomicc.org/
https://isaric4c.net/
https://genomicc.org/protocol/
http://igraph.sf.net
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was set to the mean of their ancestry. GWAS analyses were performed 

separately for each ancestry group.

Tests for association between case–control status and allele dosage 

at individual SNPs were performed by fitting logistic regression models 

using PLINK59. Independent analyses were performed for each ethnic 

group. All models included sex, age, mean-centred age2, deprivation 

score decile of residential postcode, and the first 10 genomic principal 

components as covariates.

Genomic principal components were computed on the combined 

sample of all UK Biobank and GenOMICC participants. Specifically, 

456,750 genetic variants were identified that were shared between the 

variants contained in the called genotypes in the GenOMICC dataset 

and imputed UK Biobank genotypes, which had an imputation info 

score >0.95 and MAF > 1%. After merging genotypes at these variants, 

variants were removed that had MAF < 2.5%, a missingness rate >1.5%, 

showed departure from HWE P < 10−50 or were within previously identi-

fied regions of high linkage disequilibrium within the UK Biobank. After 

LD pruning of the remaining variants to a maximum r2 of 0.01 based on 

a 1,000-variant window moving in 50 variants steps, using the PLINK 

indep-pairwise command and yielding 13,782 SNPs, the leading 20 

genomic principal components were computed using FlashPCA260.

GWAS results for individuals of European ancestry were filtered for 

MAF > 0.01, HWE P > 10−50 and genotyping rate >0.99. An extra filter 

was added to avoid bias for using a different genotyping method and 

imputation panel between controls and cases. This could not be con-

trolled for using regression because all cases and all controls were geno-

typed using different methods. MAFs for each ancestry were compared 

between UK Biobank European controls and gnomAD hg38 non-Finnish 

European individuals downloaded in August 202061. SNPs were removed 

from the GWAS results following two rules: (1) In SNPs with MAF > 10% 

in gnomAD, an absolute difference in MAF of 5% between gnomAD and 

UK Biobank controls; (2) in SNPs with MAF < 10% in gnomAD, a differ-

ence in MAF of >25% between UK Biobank controls and gnomAD. GWAS 

analyses of individuals of non-European ancestries were filtered for a 

MAF in UK Biobank controls corresponding to the same ancestry >5% 

and then for the SNPs that passed quality control in the European GWAS. 

To calculate differences between UK Biobank European individuals and 

gnomAD allele frequencies, gnomAD allele frequencies for individuals 

of non-Finnish European descent were used, as European UK Biobank 

controls are mainly non-Finnish.

Filtered GWAS analyses for each ancestry, containing a total of 

around 4.7 million SNPs, were combined in a trans-ethnic meta-analysis 

using METAL62 standard error mode and controlling for population 

stratification (genomic control on). The nearest genes were defined 

using the SNP2GENE function in FUMA v.1.3.663, using LD r2 > 0.6 and 

UK Biobank release 2 reference panel.

A sex-specific GWAS within European individuals was performed 

using 1,180 cases of unrelated men and 496 cases of unrelated women 

and 5 UK Biobank random control individuals matched by sex and ances-

try for each case. Tests for association between case–control status and 

allele dosage at individual SNPs were performed by fitting a logistic 

regression model with PLINK. Age, mean age squared, deprivation 

decile of residential postcode and the first 10 principal components 

were added as covariates in the models.

Deprivation score. The UK Data Service provides measures of depri-

vation based on census data and generated per postcode. The latest 

version of the deprivation scores were published in 2017 and are based 

on the 2011 census. As only partial postcodes were available for most 

samples we were unable to use these indices directly. However, we 

generated an approximation to the scores by calculating an average 

weighted by population count across the top-level postcode areas.

The initial input file was part of the aggregated census data iden-

tified by in the 2011 Census aggregate85 and the postcode data were 

downloaded from http://s3-eu-west-1.amazonaws.com/statistics.

digitalresources.jisc.ac.uk/dkan/files/Postcode_Counts_and_Depri-

vation_Ranks/postcodes.zip.

Population count and deprivation score for each published postcode 

were extracted and the weighted average score was calculated for each 

top-level postcode. We further categorized each top-level postcode 

score into decile and quintile bins for more coarse-grained analyses.

WGS. WGS gVCF files were obtained for the 1,667 individuals for whom 

we had WGS data. Variants overlapping the positions of the imputed 

variants were called using GATk and variants with depth <8× (the mini-

mum depth for which 95% coverage can be expected) were filtered. 

Individual VCF files were joined in a multi-sample VCF file for compari-

son with imputed variants. We used 1,613 of the 1,667 individuals in the 

final GWAS. Samples were filtered and variants were annotated using 

bcftools 1.9. VCF files obtained from imputation were processed in an 

identical manner. Alternative allele frequencies were calculated with 

PLINK 2.064 for both WGS and imputed data.

Controls

UK Biobank. UK Biobank participants were considered as potential 

controls if they were not identified by the UK Biobank as outliers based 

on either genotyping missingness rate or heterogeneity, and their sex 

inferred from the genotypes matched their self-reported sex. For these 

individuals, information on sex (UKBID 31), age, ancestry and residen-

tial postcode deprivation score decile was computed. Specifically, age 

was computed as age on 1 April 2020 based on the participant’s birth 

month (UKBID 34) and year (UKBID 52). The first part of the residential 

postcode of participants was computed based on the participant’s 

home location (UKBID 22702 and 22704) and mapped to a deprivation 

score decile as described above for GenOMICC participants. Ancestry 

was inferred as described above for GenOMICC participants.

After excluding participants who had received PCR tests for COVID-

19, based on information downloaded from the UK Biobank in August 

2020, five individuals with matching inferred ancestry were sampled 

for each GenOMICC participant as controls. After sampling each con-

trol, individuals related up to the third degree were removed from the 

pool of potential further controls. An additional analysis with more 

stringent matching on individual characteristics was also performed 

(Supplementary Information, ‘Matched controls’).

The 100,000 Genomes Project. Following ethical approval (14/EE/1112 

and 13/EE/032), consenting participants from the 100,000 Genomes 

Project with a broad range of rare diseases, cancers and infection were 

enrolled by 13 regional NHS Genomic Medicine Centres across England 

and in Northern Ireland, Scotland and Wales and whole blood was drawn 

for DNA extraction. After quality assurance, WGS at 125 or 150 base pairs 

was performed by Illumina Laboratory Services on either Hiseq 2500 

or Hiseq X sequencers in the Genomics England Sequencing Centre, 

followed by detection of small variants (single-nucleotide variants and 

small insertions or deletions) using Starling.

Tests for association between cases and control status were per-

formed by running mixed model association tests using SAIGE (v.0.39). 

In total, 1,675 individuals from the GenOMICC study and 45,875 unre-

lated participants of European ancestry were included. Genomic 

principal components were calculated for the combined dataset of 

GenOMICC participants and WGS data from the 100,000 Genomes 

Project. PCA was performed with GCTA software using approximately 

30,000 SNPs selected with MAF > 0.005 and after LD pruning (r2 < 0.1 

with a window size of 500 kb). Fitting of the null logistic mixed model 

was performed using the SNPs used for PCA and included age, sex, 

squared age, age × sex and the first 20 genomic principal components 

as covariates.

Tests for association using SAIGE were performed after filtering 

variants in the WGS dataset for genotype quality and MAF ≥ 0.05. 

GWAS-specific quality filtering was performed to include variants 

http://s3-eu-west-1.amazonaws.com/statistics.digitalresources.jisc.ac.uk/dkan/files/Postcode_Counts_and_Deprivation_Ranks/postcodes.zip
http://s3-eu-west-1.amazonaws.com/statistics.digitalresources.jisc.ac.uk/dkan/files/Postcode_Counts_and_Deprivation_Ranks/postcodes.zip
http://s3-eu-west-1.amazonaws.com/statistics.digitalresources.jisc.ac.uk/dkan/files/Postcode_Counts_and_Deprivation_Ranks/postcodes.zip


with minor allele count ≥20 for each phenotype, differential missing-

ness between cases and controls (P < 1 × 10−5) and departure from HWE 

(P < 1 × 10−5).

Generation Scotland. The Generation Scotland: Scottish Family Health 

Study is a population-based cohort of 24,084 participants sampled from 

five regional centres across Scotland65. A large subset of participants 

were genotyped using either Illumina HumanOmniExpressExome-8v1_A 

or v1-2, and 20,032 passed quality control criteria that have previously 

been described66,67. Genotype imputation using the TOPMed refer-

ence panel was recently performed (freeze 5b) using Minimac4 v.1.0 

on the University of Michigan server (https://imputationserver.sph.

umich.edu)68. Imputation data from 7,689 unrelated (genomic sharing 

identical-by-descent estimated to be <5% using PLINK 1.9) participants 

were used as control genotypes in a GWAS using GenOMICC cases of 

European ancestry, for quality control purpose of associated variants. 

GWAS was performed in a logistic regression framework implement-

ed in the glm function of PLINK 2 (https://www.cog-genomics.org/

plink/2.0/), adjusting for age, sex and the first 10 principal components 

of European ancestry. These coordinates were obtained from projection 

to the principal component space of the European population samples 

of the 1000 Genomes Project using KING v.2.2.554 and a LD-pruned 

subset of target genotyped markers that passed quality control and 

intersecting with the reference populations.

Validation

Clumped hits in discovery GWAS analyses were validated using con-

trols from Generation Scotland and the 100,000 Genomes Project. To 

consider a hit validated, the direction of effect should be the same in 

all three GWAS datasets and the P value in both Generation Scotland 

and the 100,000 Genomes Project had to be P < 0.05/nvalidations, where 

nvalidations is the number of significant independent loci in our analysis 

at the discovery threshold of P < 5 × 10−8.

Replication

Loci in GenOMICC individuals of European ancestry were defined using 

the clump function of PLINK 1.964 and clumping parameters r2 = 0.1, 

P = 5 × 10−8 and P2 = 0.01; distance to the nearest gene was calculated 

using ENSEMBL GRCh37 gene annotation.

No GWAS has been reported of critical illness or mortality in COVID-

19. As a surrogate, to provide some replication for our findings, rep-

lication analyses were performed using HGI build 37, version 2 ( July 

2020) B2 (hospitalized patients with COVID-19 versus the population) 

GWAS. Summary statistics were used from the full analysis, including 

all cohorts and GWAS without UK Biobank, to avoid sample overlap. 

The replication P value was set to 6.25 × 10−4 (0.05/8, where 8 is the 

number of loci significant in the discovery analysis).

Genome-wide meta-analysis

Meta-analysis of the GenOMICC, HGI and 23andMe datasets was per-

formed using fixed-effect inverse-variance meta-analysis in METAL62, 

with correction for genomic control on. The 23andMe study comprises 

cases and controls from an European genetic ancestry group. The HGI 

B2 analysis is a trans-ancestry meta-analysis, with the great majority of 

cases being multi-ethnic European (European and Finnish), with 238 

cases of non-European ancestry (176 individuals of admixed American 

descent from the BRACOVID study and 62 individuals of South Asian 

ancestry from the GNH study).

Post-GWAS analyses

TWAS and Meta-TWAS. We performed transcriptome-wide association 

using the MetaXcan framework23 and the GTEx v.8 eQTL MASHR-M mod-

els (http://predictdb.org/). To increase SNP coverage to perform TWAS, 

GWAS summary statistics for European ancestry were first imputed 

using the fizi69 impute function (https://github.com/bogdanlab/fizi), 

the European population from the 1000 Genomes Project as LD refer-

ence and 30% as minimum proportion of SNPs for a region (--min-prop 

0.3). Then, imputed GWAS results were harmonized, lifted over to hg38 

and linked to the 1000 Genomes Project reference panel using GWAS 

tools (https://github.com/hakyimlab/summary-gwas-imputation/

wiki/GWAS-Harmonization-And-Imputation).

Imputed and harmonized GWAS summary statistics were used to 

perform TWAS for whole-blood samples (Supplementary Fig. 16) and 

lung tissues (Fig. 2) in GTEx v.8 with the S-PrediXcan function. Result-

ing P values were corrected using the Bonferroni correction to find 

significant gene associations. To overcome the limitations of sample 

size in GTEx v.8 lung tissues and whole-blood samples, we performed 

a meta-TWAS prioritizing genes with small P values in these tissues 

and using GTEx v.8 gene expression in all tissues and S-Multixcan70.

Mendelian randomization. Mendelian randomization19 based on 

two-sample summary data was performed using the results of GenOM-

ICC and GTEx v.771 (using SMR/HEIDI pre-prepared data from https://

cnsgenomics.com/software/smr/#DataResource), with Generation 

Scotland65,72 forming a LD reference. GenOMICC results from indi-

viduals of European ancestry were used as the outcome; and GTEx 

(v.7) whole-blood expression results as the exposure. Additional data 

pertaining to GTEx v.7 were downloaded from GTEx: https://gtex-

portal.org/ (accessed 20 February, 5 April and 4 July 2020), and SMR/

HEIDI from https://cnsgenomics.com/software/smr/ (accessed 3 July 

2020). Analyses were conducted using Python v.3.7.3 and SMR/HEIDI 

v.1.03 (plots were made using SMR/HEIDI v.0.711). An LD reference was 

created using data from the population-based Generation Scotland 

cohort (used with permission; described previously67): from a random 

set of 5,000 individuals, using PLINK v.1.9 (www.cog-genomics.org/

plink/1.9/), a set of individuals with a genomic relatedness cut-off 

of <0.01 was extracted; 2,778 individuals remained in the final set. 

All data used for the SMR/HEIDI analyses were limited to autoso-

mal biallelic SNPs: 4,264,462 variants remained in the final merged  

dataset.

Significant (as per GTEx v.7; nominal P value below the nominal 

P-value threshold) local (distance to transcriptional start site <1 Mb) 

eQTLs from GTEx v.7 whole-blood samples for protein-coding genes (as 

per GENCODE v.19) with a MAF > 0.01 (GTEx v.7 and GenOMICC) were 

considered to be potential instrumental variables. Per variant, we first 

selected the Ensembl gene ID with which the eQTL was most strongly 

associated followed by selecting the variant with which each Ensembl 

gene ID was most strongly associated. Instruments were available for 

4,614 unique Ensembl gene IDs.

Results were assessed based on a list of genes selected a priori as of 

interest (Supplementary Table 3), and together as a whole. Replica-

tion of Bonferroni-corrected significant results was attempted for 

the results of COVID-19 HGI (https://www.covid19hg.org/) with the UK 

Biobank excluded (2 July 2020 data release) using the eQTLgen expres-

sion dataset20. Hospitalized patients with COVID-19 versus population 

(ANA_B2_V2) was selected as the phenotype most similar to our own, 

and therefore the most appropriate to use as a replication cohort.

To further validate the analyses above, generalized summary-data 

Mendelian randomization (GSMR)73 was performed using exposure 

data from https://www.eqtlgen.org/index.html (accessed 26 Octo-

ber 2020)20 and the publicly available GenOMICC European data 

for TYK2 and IFNAR2 (Supplementary Fig. 15). GSMR was performed 

using GCTA v.1.92.1 beta6 Linux. Pleiotropic SNPs were filtered using 

HEIDI-outlier test (threshold = 0.01) and instrument SNPs were selected 

at a genome-wide significance level (PeQTL < 5 × 10−8) using LD clumping 

(LD r2 threshold = 0.05 and window size = 1 Mb). The imputed genotypes 

for 50,000 unrelated individuals (based on SNP-derived genomic relat-

edness <0.05 using SNPs from HapMap 3) from the UK Biobank were 

used as the LD reference for clumping. GSMR accounts for remaining 

LD not removed by LD clumping.

https://imputationserver.sph.umich.edu
https://imputationserver.sph.umich.edu
https://www.cog-genomics.org/plink/2.0/
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http://predictdb.org/
https://github.com/bogdanlab/fizi
https://github.com/hakyimlab/summary-gwas-imputation/wiki/GWAS-Harmonization-And-Imputation
https://github.com/hakyimlab/summary-gwas-imputation/wiki/GWAS-Harmonization-And-Imputation
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https://www.eqtlgen.org/index.html
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Genomic region plots. Genomic region plots were created using 

https://github.com/Geeketics/LocusZooms (Supplementary Figs. 5, 6).

Gene-level and pathway analyses. The gene-level burden of signifi-

cance in the results of the European ancestry group was calculated 

using MAGMA v.1.0874 (Supplementary Fig. 17). SNPs were annotated 

to genes by mapping based on genomic location. SNPs were assigned 

to a gene if the SNPs location was within 5 kb up- or down-stream of the 

gene region (defined as the transcription start site to transcription stop 

site). The MAGMA SNP-wise mean method was applied, which utilizes 

the sum of squared SNP Z-statistics as the test statistic. The European 

reference panel of the 1000 Genomes Project was used to estimate LD 

between SNPs.

Auxiliary files were downloaded from https://ctg.cncr.nl/software/

magma on 1 September 2020. Gene location files for protein-coding 

genes were obtained from NCBI (ftp.ncbi.nlm.nih.gov) on 29 April 

2015 (gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.

gz) and 25 May 2016 (genomes/Homo_sapiens/ARCHIVE/ANNOTA-

TION_RELEASE.105/mapview/seq_gene.md.gz).

The reference data files used to estimate LD are derived from Phase 

3 of the 1000 Genomes Project.

Competitive gene set enrichment analysis was conducted in MAGMA 

using a regression model that accounts for gene–gene correlations 

to reduce bias resulting from clustering of functionally similar genes 

on the genome74. Gene sets were queried from the databases KEGG 

2019, Reactome 2016, GO Biological Process 2018, Biocarta 2016 and 

WikiPathways 2019. The Benjamini–Hochberg procedure was used to 

control false-discovery rate (<0.05).

MAIC. To put these results in the context of existing biological data 

about host genes in SARS-CoV-2 replication and response, we per-

formed MAIC24 analysis, which integrates gene-level results from the 

GenOMICC metaTWAS and an existing systematic review of host fac-

tors implicated in SARS-CoV-2 viral replication and host response in 

COVID-1945.

We developed MAIC to evaluate and integrate gene-level data from 

diverse sources24. Multiple in vitro and in vivo studies have identified 

key host genes that either directly interact with SARS-CoV-2, or define 

the host response to SARS-CoV-2. We have previously conducted a 

systematic review of these studies45. To put the new associations from 

this GWAS into context, we performed a data-driven meta-analysis of 

gene-level results combined with pre-existing biological data using 

MAIC24.

In brief, MAIC aggregates both ranked and unranked lists and per-

forms better than other methods, particularly when presented with 

heterogeneous source data. The input to MAIC is a list of named genes. 

MAIC assigns a score to each gene according to how many source data-

sets have reported that gene, and then creates a data-driven weighting 

for each data source (usually an individual experiment) based on the 

scores of the genes that are highly ranked on that list. This procedure 

is performed iteratively until the scores and weightings converge on 

stable values. To prevent a single type of experiment from unduly bias-

ing the results, input gene lists are assigned to categories, and a rule 

applied that only one weighting from each category can contribute to 

the score for any given gene.

Tissue and functional genomic enrichment. We downloaded the 

mean gene expression data summarized from RNA sequencing by the 

GTEx Project (https://gtexportal.org/). The GTEx v.7 dataset contains 

gene expression data of 19,791 genes in 48 human tissues. Gene expres-

sion values were normalized to numbers of transcripts per million 

reads. To measure the expression specificity of each gene in each tissue, 

each gene expression specificity was defined as the proportion of its 

expression in each tissue among all the tissues—that is, a value ranging 

between 0 and 1. SNPs within the 10% most specifically expressed genes 

in each tissue were annotated for subsequent testing of heritability 

enrichment. For functional genomic enrichment analysis, we consid-

ered the inbuilt primary functional annotations v.2.2 provided in the 

ldsc software (https://alkesgroup.broadinstitute.org/LDSCORE/) to 

annotated the SNPs.

With the annotated SNPs, we used stratified LD score regression75 to 

test whether any human tissue or specific functional genomic feature 

is associated with severe COVID-19. Our GWAS summary statistics were 

harmonized by the munge_sumstats.py procedure in ldsc. LD scores of 

HapMap3 SNPs (MHC region excluded) for gene annotations in each 

tissue were computed using a 1-cM window. The enrichment score was 

defined as the proportion of heritability captured by the annotated 

SNPs divided by the proportion of annotated SNPs.

Genetic correlations. We applied both the LD score regression76 

and high-definition likelihood25 methods to evaluate the genetic 

correlations between severe COVID-19 and 818 GWAS-analysed phe-

notypes stored on LD-Hub77. GWAS summary statistics were harmo-

nized by the munge_sumstats.py procedure in the ldsc software. In 

the high-definition likelihood analysis, we estimated the SNP-based 

narrow-sense heritability for each phenotype, and for the 818 complex 

traits GWAS analyses, those with SNPs with less than 90% overlap with 

the high-definition likelihood reference panel were removed.

Genome build

Results are presented using Genome Reference Consortium human 

build 37. Imputed genotypes and WGS data were lifted over from 

Genome Reference Consortium Human Build 38 using Picard lifto-

verVCF mode from GATK 4.0, which is based on the UCSC liftover tool 

(chain file obtained from ftp://ftp.ensembl.org/pub/assembly_map-

ping/homo_sapiens/GRCh38_to_GRCh37.chain.gz)78.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

Full summary-level data that support the findings of this study are 

available from https://genomicc.org/data. Individual-level data can 

be analysed by qualified researchers in the ISARIC4C/GenOMICC data 

analysis platform by application at https://genomicc.org/data. The 

full GWAS summary statistics for the 23andMe discovery dataset are 

available through 23andMe to qualified researchers under an agree-

ment with 23andMe that protects the privacy of the 23andMe partici-

pants. More information and access to the data are provided at https://

research.23andMe.com/dataset-access/.
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Extended Data Fig. 1 | QQ plots. a–f, Raw (unncorrected) P values are shown 

for each ancestry group in GenOMICC (European (a; gcc.eur); African (b; gcc.

afr); East Asian (c; gcc.eas); South Asian (d; gcc.sas)) as well as a trans-ethnic 

meta-analysis (gcc.te.meta) and a meta-analysis comprising GenOMICC, HGI 

and 23andMe data (gcc.hgi.23m). λ, genomic inflation value. Note that some 

residual inflation is evident in the primary analysis in GenOMICC European 

cohort. Repeating the analysis using more principal components (20 PCs) as 

covariates did not improve the inflation (λ0.5 = 1.10).



Extended Data Fig. 2 | MAIC shared information content. Representation of 

shared information content among data sources in the MAIC analysis. Each 

experiment or data source is represented by a block on the outer ring of the 

circle; the size of data source blocks is proportional to the summed information 

content of the input list—that is, the total contribution that this data source 

makes to the aggregate, calculated as the sum of the MAIC gene scores 

contributed by that list. Lines are coloured according to the dominant data 

source. Data sources within the same category share the same colour. The 

largest categories and data sources are labelled: Sun 202079, 2020 Rosa80,  

2020 Zhang81, 2020 Langelier82, 2020 Wei83, 2020 Heaton84. An interactive 

version of this figure is available at https://baillielab.net/maic/covid. To 

estimate the probability of the specific enrichment for GenOMICC metaTWAS, 

we randomly sampled genes from the baseline distribution of metaTWAS 

1,000 times, re-running the MAIC with the same set of COVID-19 systematic 

review inputs, but substituting the randomly sampled input list for the 

GenOMICC metaTWAS results. Modelling a normal distribution based on these 

empirical results, we estimated that the probability of a MAIC enrichment with 

this strength arising by random chance is P = 4.2 ×10−12.

https://baillielab.net/maic/covid
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Extended Data Fig. 3 | Genomic overlap among cases and controls. PCA plots 

show the distribution of all cases and controls for the first 10 principal 

components. Cases are shown as coloured circles: European (blue), African 

(red), East Asian (green) and South Asian (purple). Controls for each ancestry 

group are shown as circles in a lighter shade of the colour for that ancestry 

group. The UK Biobank data (background population) are shown as light-grey 

circles.



Extended Data Fig. 4 | Effect sizes in ancestry groups within the GenoMICC 

study. a–e, Data are shown for the four replicated variants with genome-wide 

significant associations in GenOMICC (a–d) and the ABO locus (e). Forest plots 

display the effect size heterogeneity measures and P value (p) and 

meta-analysis estimates with 95% confidence interval (CI), and P value (P-val) 

under a fixed-effect model. The allele in bold is the reference allele for the 

reported effect (odds ratio). Sample sizes for the cases and controls analysed in 

the four groups were: 1,092 individuals of African (AFR) ancestry, 894 

individuals of East Asian (EAS) ancestry, 10,055 individuals of European (EUR) 

ancestry and 1,422 individuals of South Asian (SAS) ancestry within GenOMICC. 

HGI, COVID-19 HGI; 23m, 23andMe. Observed heterogeneity in the effect size 

may be owing to genuine differences between ancestry groups, the limited 

statistical power in smaller groups (evident from the broad confidence 

intervals) or residual confounding factors.
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Extended Data Table 1 | Baseline characteristics of the 2,244 included patients

Ancestry groups were determined by principal component analysis (Extended Data Fig. 3). Significant comorbidity was defined as the presence of functionally limiting comorbid illness in 

GenOMICC, according to the assessment of the treating clinicians. In ISARIC4C, significant comorbidity refers to the presence of any chronic cardiac, lung, kidney or liver disease, cancer or 

dementia. Age is shown as mean ± standard deviation (SD).



Extended Data Table 2 | Replication in external data

Alt, alternative allele; chr:pos, chromosome:position; locus, gene nearest to the top SNP; OR, effect size (odds ratio) of the risk allele; P, P value; Risk, risk allele. Subscript identifiers show the 

data source: gcc.ukb, GenOMICC study, European ancestry, comparison with UK Biobank; hgi.23m, COVID-19 HGI and 23andMe meta-analysis, used for replication. Bonferroni significant 

values with external replication are indicated with an asterisk.



1

n
atu

re research
  |  rep

o
rtin

g
 su

m
m

ary
A

p
ril 2

0
2

0

Corresponding author(s): John Kenneth Baillie

Last updated by author(s): Nov 13, 2020

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Illumina i-scan platform, GenomeStudio Analysis software v2.0.3, GSAMD-24v3-0-EA_20034606_A1.bpm manifest and cluster file provided by 

manufacturer

Data analysis GenomeStudio v2.03, DRAGEN v0.1.11.269.3.2.22, GATK 4.1.8.1, Plink 1.9, Plink 2.0, King 2.1, R v3.6, python v3.7, GATK 4.0, USC liftover,  

GCTA v1.92 ,SAIGE v0.39, metal,  MAGMAv1.08, BCFtools 1.9, QCtools 1.3, FlashPCA2,  admixture, FUMA v1.3.6, SMR/HEIDI v1.03, MetaXcan 

(git commit 0b7c10d633d3d7bfe794e4f35bd8190356bb2514), MiniMac4 v1.0, 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Full summary-level data in support of the findings of this study are available for download from [https://genomicc.org/data](https://genomicc.org/data). Individual 

level data can be analysed by qualified researchers in the ISARIC 4C/GenOMICC data analysis platform by application at [https://genomicc.org/data](https://

genomicc.org/data). 

 

The full GWAS summary statistics for the 23andMe discovery data set will be made available through 23andMe to qualified researchers under an agreement with 



2

n
atu

re research
  |  rep

o
rtin

g
 su

m
m

ary
A

p
ril 2

0
2

0

23andMe that protects the privacy of the 23andMe participants. Please visit https://research.23andMe.com/dataset-access/ for more information and to apply to 

access the data.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size n=2244 critically ill Covid-19 patients, n=11220 random controls matched by ancestry from UK Biobank. The sample size was determined 

pragmatically by the number of cases recruited during the first wave of the outbreak in the UK. Adequate statistical power was determined by 

the detection of significant associations, and is confirmed by replication in external studies.

Data exclusions Patients of mixed genetic ancestry, and from ancestry groups with small numbers of cases (such as North American Indian) defined using 

principal components analysis, were excluded because we were not able to match adequate controls for these individuals.

Replication Replicated main findings using 2415 hospitalised Covid-19 patients and 477741 population controls from Covid19 Host genetics initiative  and 

1128 Covid19 cases and 679531 population controls from 23andme Inc "broad respiratory" phenotype. 3 variants did not replicate; all are in 

the MHC region, which is both highly sensitive to population stratification (potentially causing spurious associations)  and commonly 

associated with infectious and immune disease.

Randomization Not relevant to the study. There wasn't any allocation to experimental groups

Blinding Blinding was not used in this study because the exposure (genotype) and outcome (ICU admission) are objective. Confounding was controlled 

by the use of covariates: age, sex, deprivation score and genetic ancestry (principal components).

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics 1574 males, 670 females.  1176 European ancestry, 227 South Asian ancestry,  182 African ancestry, 149 East Asian ancestry. 

Mean age is 57.3 years 

Recruitment Critically-ill cases were recruited through the GenOMICC study in 208 UK Intensive Care Units and hospitalised cases through 

the International Severe Acute Respiratory Infection Consortium (ISARIC) Coronavirus Clinical Characterisation Consortium 

(4C) study. Genomicc patients ha confirmed Covid-19 according to local clinical testing and were deemed by the treating 

physician to require continuous cardiorespiratory monitoring in intensive care units. ISARIC4C individuals had confirmed 

Covid-19 and were deemed to require hospital admission. Since this outcome is determined by clinicians it is unlikely to be 

affected by self-selection bias. 

Ethics oversight  Research ethics committees (Scotland 15/SS/0110, England, Wales and Northern Ireland: 19/WM/0247. Current and 

previous versions of the study protocol are available at genomicc.org/protocol. All participants gave informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Genetic mechanisms of critical illness in COVID-19

	Characteristics of participants

	GWAS results

	Replication

	Mendelian randomization

	Transcriptome-wide association study

	Genetic correlations

	Discussion

	Online content

	Fig. 1 Discovery GWAS and meta-analysis results.
	Fig. 2 Summary of TWAS results.
	Extended Data Fig. 1 QQ plots.
	Extended Data Fig. 2 MAIC shared information content.
	Extended Data Fig. 3 Genomic overlap among cases and controls.
	Extended Data Fig. 4 Effect sizes in ancestry groups within the GenoMICC study.
	Table 1 Lead variants from independent genome-wide significant regions.
	Table 2 Meta-analysis of overlapping SNPs between GenOMICC, HGI and 23andMe studies.
	Extended Data Table 1 Baseline characteristics of the 2,244 included patients.
	Extended Data Table 2 Replication in external data.


